« Vrati se
We denote by \mathbb{R}^+ the set of all positive real numbers.

Find all functions f: \mathbb R^ + \rightarrow\mathbb R^ + which have the property: f\left(x\right)f\left(y\right) = 2f\left(x + yf\left(x\right)\right) for all positive real numbers x and y.

Slični zadaci

Find all functions f: \mathbb{R}^{ + }\to\mathbb{R}^{ + } satisfying f\left(x + f\left(y\right)\right) = f\left(x + y\right) + f\left(y\right) for all pairs of positive reals x and y. Here, \mathbb{R}^{ + } denotes the set of all positive reals.

Proposed by Paisan Nakmahachalasint, Thailand
Consider those functions f: \mathbb{N} \mapsto \mathbb{N} which satisfy the condition
f(m + n) \geq f(m) + f(f(n)) - 1
for all m,n \in \mathbb{N}. Find all possible values of f(2007).

Author: unknown author, Bulgaria
Find all functions f: \mathbb{R}\to\mathbb{R} such that f\left(x+y\right)+f\left(x\right)f\left(y\right)=f\left(xy\right)+2xy+1 for all real numbers x and y.
Does there exist a function s\colon \mathbf{Q} \rightarrow \{-1,1\} such that if x and y are distinct rational numbers satisfying {xy=1} or {x+y\in \{0,1\}}, then {s(x)s(y)=-1}? Justify your answer.
Find all nondecreasing functions f: \mathbb{R}\rightarrow\mathbb{R} such that
(i) f(0) = 0, f(1) = 1;
(ii) f(a) + f(b) = f(a)f(b) + f(a + b - ab) for all real numbers a, b such that a < 1 < b.
Find all functions f from the reals to the reals such that

f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)

for all real x,y.