Let
be an acute-angled triangle with
. Let
be the orthocenter of triangle
, and let
be the midpoint of the side
. Let
be a point on the side
and
a point on the side
such that
and the points
,
,
are on the same line. Prove that the line
is perpendicular to the common chord of the circumscribed circles of triangle
and triangle
.
%V0
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.