Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 2005 problem N6
2005
shortlist
tb
Let
,
be positive integers such that
is a multiple of
for all positive integers
. Prove that
.
%V0 Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
2199
IMO Shortlist 2005 problem N3
2005
shortlist
tb
13
2200
IMO Shortlist 2005 problem N4
2005
shortlist
tb
13
2201
IMO Shortlist 2005 problem N5
2005
shortlist
tb
3
2203
IMO Shortlist 2005 problem N7
2005
shortlist
tb
2
2232
IMO Shortlist 2006 problem N6
2006
shortlist
tb
0
2318
IMO Shortlist 2009 problem N6
2009
niz
shortlist
tb
1