Školjka
Natjecanja
Shellfish
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 2005 problem N6
2005
shortlist
tb
Let
,
be positive integers such that
is a multiple of
for all positive integers
. Prove that
.
%V0 Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
2318
IMO Shortlist 2009 problem N6
2009
niz
shortlist
tb
1
2232
IMO Shortlist 2006 problem N6
2006
shortlist
tb
0
2203
IMO Shortlist 2005 problem N7
2005
shortlist
tb
2
2201
IMO Shortlist 2005 problem N5
2005
shortlist
tb
3
2200
IMO Shortlist 2005 problem N4
2005
shortlist
tb
13
2199
IMO Shortlist 2005 problem N3
2005
shortlist
tb
13