« Vrati se
Let n be a positive integer, and let x and y be a positive real number such that x^n + y^n = 1. Prove that 
  \left(\sum^n_{k = 1} \frac {1 + x^{2k}}{1 + x^{4k}} \right) \cdot \left( \sum^n_{k = 1} \frac {1 + y^{2k}}{1 + y^{4k}} \right) < \frac{1}{(1 - x)(1 - y)} \text{.}

Author: unknown author, Estonia

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2261IMO Shortlist 2007 problem N56
2238IMO Shortlist 2007 problem A52
2237IMO Shortlist 2007 problem A49
2235IMO Shortlist 2007 problem A211
1874IMO Shortlist 1993 problem N41
1852IMO Shortlist 1993 problem A40