« Vrati se
Let c > 2, and let a(1), a(2), \ldots be a sequence of nonnegative real numbers such that
a(m + n) \leq 2 \cdot a(m) + 2 \cdot a(n) \text{ for all } m,n \geq 1,
and a\left(2^k \right) \leq \frac {1}{(k + 1)^c} \text{ for all } k \geq 0. Prove that the sequence a(n) is bounded.

Author: Vjekoslav Kovač, Croatia

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2236IMO Shortlist 2007 problem A39
2151IMO Shortlist 2004 problem A513
2125IMO Shortlist 2003 problem A60
2122IMO Shortlist 2003 problem A31
2016IMO Shortlist 1999 problem A60
1924IMO Shortlist 1995 problem S40