Slični zadaci
Let
be a fixed triangle, and let
,
,
be the midpoints of sides
,
,
, respectively. Let
be a variable point on the circumcircle. Let lines
,
,
meet the circumcircle again at
,
,
, respectively. Assume that the points
,
,
,
,
,
are distinct, and lines
,
,
form a triangle. Prove that the area of this triangle does not depend on
.
Author: Christopher Bradley, United Kingdom
























Author: Christopher Bradley, United Kingdom
Determine the smallest positive real number
with the following property. Let
be a convex quadrilateral, and let points
,
,
, and
lie on sides
,
,
, and
, respectively. Consider the areas of triangles
,
,
and
; let
be the sum of the two smallest ones, and let
be the area of quadrilateral
. Then we always have
.
Author: unknown author, USA


















Author: unknown author, USA
Point
lies on side
of a convex quadrilateral
. Let
be the incircle of triangle
, and let
be its incenter. Suppose that
is tangent to the incircles of triangles
and
at points
and
, respectively. Let lines
and
meet at
, and let lines
and
meet at
. Prove that points
,
, and
are collinear.
Author: Waldemar Pompe, Poland




















Author: Waldemar Pompe, Poland