« Vrati se
Let n be a positive integer. Given a sequence \epsilon_1, ..., \epsilon_{n - 1} with \epsilon_i = 0 or \epsilon_i = 1 for each i = 1, ..., n - 1, the sequences a_0, ..., a_n and b_0, ..., b_n are constructed by the following rules: a_0 = b_0 = 1, a_1 = b_1 = 7,
a_{i + 1} = \left\{\begin{array}{cl}2a_{i - 1} + 3a_i\text{,} & \text{if } \epsilon_i = 0 \text{,}\\3a_{i - 1} + a_i\text{,} & \text{if } \epsilon_{i}= 1,\end{array}\right.
for each i = 1, ..., n - 1,
b_{i + 1} = \left\{\begin{array}{cl}2b_{i - 1} + 3b_i\text{,} & \text{if } \epsilon_{n - i} = 0 \text{,}\\3b_{i - 1} + b_i\text{,} & \text{if } \epsilon_{n - i} = 1 \text{,}\end{array}\right.
for each i = 1, ..., n - 1.

Prove that a_n = b_n.

Proposed by Ilya Bogdanov, Russia

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2301IMO Shortlist 2009 problem C56
2297IMO Shortlist 2009 problem C120
2244IMO Shortlist 2007 problem C43
2241IMO Shortlist 2007 problem C16
2184IMO Shortlist 2005 problem C35
1862IMO Shortlist 1993 problem C50