Slični zadaci
Point
lies on side
of a convex quadrilateral
. Let
be the incircle of triangle
, and let
be its incenter. Suppose that
is tangent to the incircles of triangles
and
at points
and
, respectively. Let lines
and
meet at
, and let lines
and
meet at
. Prove that points
,
, and
are collinear.
Author: Waldemar Pompe, Poland




















Author: Waldemar Pompe, Poland
Let the sides
and
of the quadrilateral
(such that
is not parallel to
) intersect at point
. Points
and
are circumcenters and points
and
are orthocenters of triangles
and
, respectively. Denote the midpoints of segments
and
by
and
, respectively. Prove that the perpendicular from
on
, the perpendicular from
on
and the lines
are concurrent.
Proposed by Ukraine





















Proposed by Ukraine