« Vrati se
A positive integer N is called balanced, if N=1 or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by P\!\left(x\right) = \left(x+a\right)\left(x+b\right).
a) Prove that there exist distinct positive integers a and b such that all the number P\!\left(1\right), P\!\left(2\right), ..., P\!\left(50\right) are balanced.
b) Prove that if P\!\left(n\right) is balanced for all positive integers n, then a=b.

Proposed by Jorge Tipe, Peru

Slični zadaci

A natural number n is said to have the property P, if, for all a, n^2 divides a^n - 1 whenever n divides a^n - 1.

a.) Show that every prime number n has property P.

b.) Show that there are infinitely many composite numbers n that possess property P.
Let a,b,n be positive integers, b > 1 and b^n-1|a. Show that the representation of the number a in the base b contains at least n digits different from zero.
Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers (not necessarily positive) satisfying the equations
a^n + pb = b^n + pc = c^n + pa
then a = b = c.

Proposed by Angelo Di Pasquale, Australia
Let a_1, a_2, \ldots, a_n be distinct positive integers, n\ge 3. Prove that there exist distinct indices i and j such that a_i + a_j does not divide any of the numbers 3a_1, 3a_2, \ldots, 3a_n.

Proposed by Mohsen Jamaali, Iran
Find all positive integers n such that there exists a sequence of positive integers a_1, a_2, ..., a_n satisfying
a_{k+1}=\frac{a_k^2+1}{a_{k-1}+1}-1 for every k with 2 \leqslant k \leqslant n-1.

Proposed by North Korea
Find all non-negative integer solutions of the equation 2^x+2009=3^y5^z.