« Vrati se
Neka je f(x)=x^n + a_{n-1}x^{n-1}+ \ldots + a_0 polinom s realnim koeficijentima takav da je |f(0)|= f(1), pri čemu je za svaki njegov korijen \alpha, 0<\alpha<1. Dokažite da produkt svih korijena nije veći od \frac{1}{2^n}.

Slični zadaci

Let a_{ij} (with the indices i and j from the set \left\{1,\ 2,\ 3\right\}) be real numbers such that

a_{ij}>0 for i = j;
a_{ij}<0 for i\neq j.

Prove the existence of positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},
a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},
a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}

are either all negative, or all zero, or all positive.
The numbers from 1 to n^2 are randomly arranged in the cells of a n \times n square (n \geq 2). For any pair of numbers situated on the same row or on the same column the ratio of the greater number to the smaller number is calculated. Let us call the characteristic of the arrangement the smallest of these n^2\left(n-1\right) fractions. What is the highest possible value of the characteristic ?
Let r_{1},r_{2},\ldots ,r_{n} be real numbers greater than or equal to 1. Prove that

\frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}.
Suppose that a, b, c > 0 such that abc = 1. Prove that \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1.
Find all of the positive real numbers like x,y,z, such that :

1.) x + y + z = a + b + c

2.) 4xyz = a^2x + b^2y + c^2z + abc

Proposed to Gazeta Matematica in the 80s by VASILE CÎRTOAJE and then by Titu Andreescu to IMO 1995.
Let a_{0} = 1994 and a_{n + 1} = \frac {a_{n}^{2}}{a_{n} + 1} for each nonnegative integer n. Prove that 1994 - n is the greatest integer less than or equal to a_{n}, 0 \leq n \leq 998