« Vrati se
Neka je n>1 neparan cijeli broj pri čemu postoje cijeli brojevi x_1, x_2, \ldots x_n \geq 0 koji zadovoljavaju jednadžbe
 (x_2-x_1)^2+2(x_2+x_1)+1=n^2
 (x_3-x_2)^2+2(x_3+x_2)+1=n^2
 \ldots \ldots \ldots \ldots \ldots \ldots \ldots
 (x_1-x_n)^2+2(x_1+x_n)+1=n^2
Pokažite da je ili x_1=x_n ili postoji j, \ 1 \leq j \leq n-1 takav da je x_j=x_{j+1}.

Slični zadaci

Let a_{ij} (with the indices i and j from the set \left\{1,\ 2,\ 3\right\}) be real numbers such that

a_{ij}>0 for i = j;
a_{ij}<0 for i\neq j.

Prove the existence of positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},
a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},
a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}

are either all negative, or all zero, or all positive.
The numbers from 1 to n^2 are randomly arranged in the cells of a n \times n square (n \geq 2). For any pair of numbers situated on the same row or on the same column the ratio of the greater number to the smaller number is calculated. Let us call the characteristic of the arrangement the smallest of these n^2\left(n-1\right) fractions. What is the highest possible value of the characteristic ?
Let r_{1},r_{2},\ldots ,r_{n} be real numbers greater than or equal to 1. Prove that

\frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}.
Let a_{1}, a_{2}...a_{n} be non-negative reals, not all zero. Show that that
(a) The polynomial p(x) = x^{n} - a_{1}x^{n - 1} + ... - a_{n - 1}x - a_{n} has preceisely 1 positive real root R.
(b) let A = \sum_{i = 1}^n a_{i} and B = \sum_{i = 1}^n ia_{i}. Show that A^{A} \leq R^{B}.
Suppose that a, b, c > 0 such that abc = 1. Prove that \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1.
Solve the following system of equations, in which a is a given number satisfying |a| > 1:

\begin{matrix}x_{1}^{2}= ax_{2}+1\\ x_{2}^{2}= ax_{3}+1\\ \ldots\\ x_{999}^{2}= ax_{1000}+1\\ x_{1000}^{2}= ax_{1}+1\\ \end{matrix}