« Vrati se
Consider a n \times n checkerboard with n > 1, n \in \mathbb{N}. How many possibilities are there to put 2n - 2 identical pebbles on the checkerboard (each on a different field/place) such that no two pebbles are on the same checkerboard diagonal. Two pebbles are on the same checkerboard diagonal if the connection segment of the midpoints of the respective fields are parallel to one of the diagonals of the n \times n square.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1959IMO Shortlist 1997 problem 30
2401skakavac 2012 prvo kolo ss3 20
2419MEMO 2008 ekipno problem 66
2511skakavac 2012 trece kolo ss1 23
2522brojevi u krugu5
25233 hrpe novcica5