« Vrati se
Let ABC be an acute-angled triangle. Let E be a point such E and B are on distinct sides of the line AC, and D is an interior point of segment AE. We have \angle ADB = \angle CDE, \angle BAD = \angle ECD, and \angle ACB = \angle EBA. Prove that B, C and E lie on the same line.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1335IMO Shortlist 1969 problem 50
1340IMO Shortlist 1969 problem 100
1387IMO Shortlist 1969 problem 570
1388IMO Shortlist 1969 problem 581
2395skakavac 2012 prvo kolo ss1 37
2431MEMO 2009 ekipno problem 66