IMO Shortlist 1969 problem 5


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
(BEL 5) Let G be the centroid of the triangle OAB.
(a) Prove that all conics passing through the points O,A,B,G are hyperbolas.
(b) Find the locus of the centers of these hyperbolas.
Source: Međunarodna matematička olimpijada, shortlist 1969