« Vrati se
Let ABC be an acute-angled triangle. Let E be a point such E and B are on distinct sides of the line AC, and D is an interior point of segment AE. We have \angle ADB = \angle CDE, \angle BAD = \angle ECD, and \angle ACB = \angle EBA. Prove that B, C and E lie on the same line.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2431MEMO 2009 ekipno problem 66
2395skakavac 2012 prvo kolo ss1 37
1388IMO Shortlist 1969 problem 581
1387IMO Shortlist 1969 problem 570
1340IMO Shortlist 1969 problem 100
1335IMO Shortlist 1969 problem 50