« Vrati se
Let ABCD be a convex quadrilateral such that AB and CD are not parallel and AB=CD. The midpoints of the diagonals AC and BD are E and F, respectively. The line EF meets segments AB and CD at G and H, respectively. Show that \angle AGH = \angle DHG.

Slični zadaci

U konveksnom četverokutu ABCD vrijedi |AD| = |CD| i \angle{DAB} = \angle{ABC} < 90^\circ. Pravac kroz D i polovište \overline{BC} siječe pravac AB u točki E. Dokažite da je \angle{BEC} = \angle{DAC}.
Unutarnja točka P u pravokutniku ABCD odabrana je tako da je \angle{BPC}+\angle{APD}=180^\circ. Odredi sumu kutova \angle{BCP} i \angle{DAP}.
Dan je tetivan četverokut ABCD, kojemu je \overline{AC} promjer opisane kružnice. Neka točke E i F leže na pravcima AD i AB. Dužine \overline{EF} i \overline{BD} se sijeku u G. Dokaži da ako je AECF tetivan, da je \angle EGC=90^\circ.
Let ABCDE be a convex pentagon with all five sides equal in length. The diagonals AD and EC meet in S with \angle ASE = 60^\circ. Prove that ABCDE has a pair of parallel sides.
Let A, B, C, D, E be points such that ABCD is a cyclic quadrilateral and ABDE is a parallelogram. The diagonals AC and BD intersect at S and the rays AB and DC intersect at F. Prove that \sphericalangle{AFS}=\sphericalangle{ECD}.
Suppose that ABCD is a cyclic quadrilateral and CD=DA. Points E and F belong to the segments AB and BC respectively, and \angle ADC=2\angle EDF. Segments DK and DM are height and median of triangle DEF, respectively. L is the point symmetric to K with respect to M. Prove that the lines DM and BL are parallel.