« Vrati se
Initially, only the integer 44 is written on a board. An integer a on the board can be re- placed with four pairwise different integers a_1, a_2, a_3, a_4 such that the arithmetic mean \frac 14 (a_1 + a_2 + a_3 + a_4) of the four new integers is equal to the number a. In a step we simultaneously replace all the integers on the board in the above way. After 30 steps we end up with n = 4^{30} integers b_1, b2,\ldots, b_n on the board. Prove that \frac{b_1^2 + b_2^2+b_3^2+\cdots+b_n^2}{n}\geq 2011.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1454IMO Shortlist 1973 problem 120
2386skakavac 2012 drugo kolo ss2 21
2419MEMO 2008 ekipno problem 66
2427MEMO 2009 ekipno problem 21
2452MEMO 2011 ekipno problem 35
2532skakavac 2013 prvo kolo ss2 23