Initially, only the integer
is written on a board. An integer a on the board can be re- placed with four pairwise different integers
such that the arithmetic mean
of the four new integers is equal to the number
. In a step we simultaneously replace all the integers on the board in the above way. After
steps we end up with
integers
on the board. Prove that
%V0
Initially, only the integer $44$ is written on a board. An integer a on the board can be re- placed with four pairwise different integers $a_1, a_2, a_3, a_4$ such that the arithmetic mean $\frac 14 (a_1 + a_2 + a_3 + a_4)$ of the four new integers is equal to the number $a$. In a step we simultaneously replace all the integers on the board in the above way. After $30$ steps we end up with $n = 4^{30}$ integers $b_1, b2,\ldots, b_n$ on the board. Prove that $$\frac{b_1^2 + b_2^2+b_3^2+\cdots+b_n^2}{n}\geq 2011.$$