« Vrati se
Nađi sve prirodne brojeve m,n takve da vrijedi:
1^1 + 2^2 + 3^3 + \cdots + n^n=m^n \text{.}

Slični zadaci

Let a_1, a_2, \ldots, a_n be distinct positive integers, n\ge 3. Prove that there exist distinct indices i and j such that a_i + a_j does not divide any of the numbers 3a_1, 3a_2, \ldots, 3a_n.

Proposed by Mohsen Jamaali, Iran
A positive integer N is called balanced, if N=1 or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by P\!\left(x\right) = \left(x+a\right)\left(x+b\right).
a) Prove that there exist distinct positive integers a and b such that all the number P\!\left(1\right), P\!\left(2\right), ..., P\!\left(50\right) are balanced.
b) Prove that if P\!\left(n\right) is balanced for all positive integers n, then a=b.

Proposed by Jorge Tipe, Peru
Odredite prirodan broj n takav da za njegova četiri najmanja djelitelja d_1, d_2, d_3, d_4 vrijedi: d_1^2+d_2^2+d_3^2+d_4^2=n.
Za broj kažemo da je malen ako je strogo manji od zbroja svih svojih djelitelja ne uključujući njega samog. Postoji li malen neparan broj?
Find all positive integers n which satisfy the following tow conditions:
(a) n has at least four different positive divisors;
(b) for any divisors a and b of n satisfying 1<a<b<n, the number b-a divides n.
Nađite sve prirodne brojeve x i y za koje vrijedi 1! + 2! + 3! + \cdots + x! =
y^2.