« Vrati se
Find all functions f: \mathbb{N} \rightarrow \mathbb{N}
f(f(m)+f(n))=m+n

Slični zadaci

Find all functions f: \mathbb{N} \rightarrow \mathbb{N} such that
f(f(f(n))) + f(f(n)) + f(n) = 3n
for all n \in \mathbb{N}.
Prove that there is a function f: \mathbb{N} \rightarrow \mathbb{N} such that \forall n \in \mathbb{N} f(f(n))=n^2 \text{.}
Find all surjective functions f: \mathbb{N} \rightarrow \mathbb{N} such that for all m,n \in \mathbb{N}
m \mid n \Leftrightarrow f(m) \mid  f(n)
Let n be a positive integer. Show that the numbers
\binom{2^n - 1}{0},\; \binom{2^n - 1}{1},\; \binom{2^n - 1}{2},\; \ldots,\; \binom{2^n - 1}{2^{n - 1} - 1}
are congruent modulo 2^n to 1, 3, 5, \ldots, 2^n - 1 in some order.

Proposed by Duskan Dukic, Serbia
For every integer k \geq 2, prove that 2^{3k} divides the number
\binom{2^{k + 1}}{2^{k}} - \binom{2^{k}}{2^{k - 1}}
but 2^{3k + 1} does not.

Author: unknown author, Poland
Find all positive integers n such that there exists a unique integer a such that 0\leq a < n! with the following property:
n!\mid a^n + 1