« Vrati se

Let 2\mathbb{Z} + 1 denote the set of odd integers. Find all functions f:\mathbb{Z} \mapsto 2\mathbb{Z} + 1 satisfying f(x + f(x) + y) + f(x - f(x) - y) = f(x+y) + f(x-y)for every x, y \in \mathbb{Z}.

(U.S.A.)

Slični zadaci