Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots))$. Suppose that $f$ has the following two properties:
\\\\
(i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0}$;\\
\\(ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\}$ is finite.
\\\\\\
Prove that the sequence $f(1) - 1, f(2) - 2, f(3) - 3, \ldots$ is periodic.
\begin{flushright}\emph{(Singapore)}\end{flushright}