« Vrati se

Let ABC be a triangle. The internal bisector of ABC intersects the side \overline{AC} at L and the circumcircle of triangle ABC again at W \neq B. Let K be the perpendicular projection of L onto AW. The circumcircle of triangle BLC intersects line CK again at P \neq C. Lines BP and AW meet at T. Prove |AW| = |WT|.

Slični zadaci