MEMO 2018 ekipno problem 6

  Avg: 0.0
  Avg: 6.0
Dodao/la: arhiva
Sept. 8, 2018

Let ABC be a triangle. The internal bisector of ABC intersects the side \overline{AC} at L and the circumcircle of triangle ABC again at W \neq B. Let K be the perpendicular projection of L onto AW. The circumcircle of triangle BLC intersects line CK again at P \neq C. Lines BP and AW meet at T. Prove |AW| = |WT|.

Source: Srednjoeuropska matematička olimpijada 2018, ekipno natjecanje, problem 6