« Vrati se
Spojnice središta trokutu upisane kružnice i njegovih vrhova dijele ga na tri trokuta od kojih je jedan sličan polaznome. Odredite kutove polaznog trokuta.

Slični zadaci

Duljine stranica trokuta su a, b i c, a R je duljina polumjera opisane mu kružnice. Odredite kutove trokuta ako vrijedi R = \displaystyle \frac{a\sqrt{bc}}{b+c}.
Zadan je konveksan četverokut ABCD koji nije paralelogram. Neka pravac koji prolazi kroz polovišta dijagonala četverokuta siječe stranice \overline{AB} i \overline{CD} redom u točkama M i N. Dokaži da trokuti ABN i CDM imaju jednake površine.
Dan je pravilni deveterokut sa stranicom duljine a. Kolika je razlika duljina njegove najdulje i najkraće dijagonale?
U šesterokutu ABCDEF vrijedi  AB \perp BC \text{,} \qquad AC \perp CD \text{,} \qquad AD \perp DE \text{,} \qquad AE \perp EF \text{.} Ako su duljine stranica tog šesterokuta prirodni brojevi, dokaži da ne mogu svi biti neparni.
Izvan pravilnog mnogokuta A_1A_2 \ldots A_n nalazi se točka B takva da je trokut A_1A_2B jednakostraničan. Odredi sve n za koje su točke B, A_2 i A_3 uzastopni vrhovi nekog pravilnog mnogokuta.
Dan je tetivni četverokut ABCD. Simetrala dužine \overline{BC} siječe dužinu \overline{AB} u točki E. Kružnica koja prolazi točkom E, vrhom C i polovištem F stranice \overline{BC} siječe dužinu \overline{CD} u točki G. Dokaži da su pravci AD i FG međusobno okomiti.