« Vrati se
Dan je tetivni četverokut ABCD. Simetrala dužine \overline{BC} siječe dužinu \overline{AB} u točki E. Kružnica koja prolazi točkom E, vrhom C i polovištem F stranice \overline{BC} siječe dužinu \overline{CD} u točki G. Dokaži da su pravci AD i FG međusobno okomiti.

Slični zadaci

Dokažite da su težišnice iz vrhova A i B trokuta ABC međusobno okomite ako i samo ako za duljine stranica vrijedi jednakost \left\vert BC \right\vert^2 + \left\vert AC \right\vert^2 = 5 \left\vert AB \right\vert^2 \text{.}
Spojnice središta trokutu upisane kružnice i njegovih vrhova dijele ga na tri trokuta od kojih je jedan sličan polaznome. Odredite kutove polaznog trokuta.
Duljine stranica trokuta su a, b i c, a R je duljina polumjera opisane mu kružnice. Odredite kutove trokuta ako vrijedi R = \displaystyle \frac{a\sqrt{bc}}{b+c}.
Iz jednog vrha šiljastokutnog trokuta povučena je visina, iz drugog težišnica, a iz trećeg simetrala kuta. Ta tri pravca ne prolaze istom točkom, već njihove točke presjeka čine vrhove novog trokuta. Dokaži da novi trokut ne može biti jednakostraničan.
Na polupravcima p i q sa zajedničkim početkom O dane su točke A i C (na p) te B i D (na q). Ako je pravac CD paralelan s težišnicom trokuta OAB, dokažite da je pravac AB paralelan s težišnicom trokuta OCD.
Zadan je konveksan četverokut ABCD koji nije paralelogram. Neka pravac koji prolazi kroz polovišta dijagonala četverokuta siječe stranice \overline{AB} i \overline{CD} redom u točkama M i N. Dokaži da trokuti ABN i CDM imaju jednake površine.