« Vrati se
In a plane a set of n points (n \geq 3) is give. Each pair of points is connected by a segment. Let d be the length of the longest of these segments. We define a diameter of the set to be any connecting segment of length d. Prove that the number of diameters of the given set is at most n.

Slični zadaci

Let n\ge2 be an integer. Prove that if k^2+k+n is prime for all integers k such that 0\le k\le\sqrt{n\over3}, then k^2+k+n is prime for all integers k such that 0\le k\le n-2.(IMO Problem 6)

Original Formulation

Let f(x) = x^2 + x + p, p \in \mathbb N. Prove that if the numbers f(0), f(1), \cdots , f(\sqrt{p\over 3} ) are primes, then all the numbers f(0), f(1), \cdots , f(p - 2) are primes.

Proposed by Soviet Union.
Let a and b be two positive integers such that a \cdot b + 1 divides a^{2} + b^{2}. Show that \frac {a^{2} + b^{2}}{a \cdot b + 1} is a perfect square.
A permutation \{x_1, \ldots, x_{2n}\} of the set \{1,2, \ldots, 2n\} where n is a positive integer, is said to have property T if |x_i - x_{i + 1}| = n for at least one i in \{1,2, \ldots, 2n - 1\}. Show that, for each n, there are more permutations with property T than without.
We call a set S on the real line \mathbb{R} superinvariant if for any stretching A of the set by the transformation taking x to A(x) = x_0 + a(x - x_0), a > 0 there exists a translation B, B(x) = x+b, such that the images of S under A and B agree; i.e., for any x \in S there is a y \in S such that A(x) = B(y) and for any t \in S there is a u \in S such that B(t) = A(u). Determine all superinvariant sets.
For each positive integer \,n,\;S(n)\, is defined to be the greatest integer such that, for every positive integer \,k\leq S(n),\;n^{2}\, can be written as the sum of \,k\, positive squares.

a.) Prove that \,S(n)\leq n^{2}-14\, for each \,n\geq 4.
b.) Find an integer \,n\, such that \,S(n)=n^{2}-14.
c.) Prove that there are infintely many integers \,n\, such that S(n)=n^{2}-14.
For each positive integer n, let f(n) denote the number of ways of representing n as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, f(4) = 4, because the number 4 can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1.

Prove that, for any integer n \geq 3 we have 2^{\frac {n^2}{4}} < f(2^n) < 2^{\frac {n^2}2}.