« Vrati se
Let a_1, \ldots, a_n be n positive numbers and 0 < q < 1. Determine n positive numbers b_1, \ldots, b_n so that:

a.) k < b_k for all k = 1, \ldots, n ,
b.) \displaystyle q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q} for all k = 1, \ldots, n-1,
c.) \displaystyle \sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1481IMO Shortlist 1975 problem 100
1524IMO Shortlist 1978 problem 101
1540IMO Shortlist 1979 problem 90
1582IMO Shortlist 1982 problem 60
1826IMO Shortlist 1991 problem 280
1980IMO Shortlist 1997 problem 240