« Vrati se
Let a_1, \ldots, a_n be n positive numbers and 0 < q < 1. Determine n positive numbers b_1, \ldots, b_n so that:

a.) k < b_k for all k = 1, \ldots, n ,
b.) \displaystyle q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q} for all k = 1, \ldots, n-1,
c.) \displaystyle \sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1980IMO Shortlist 1997 problem 240
1826IMO Shortlist 1991 problem 280
1582IMO Shortlist 1982 problem 60
1540IMO Shortlist 1979 problem 90
1524IMO Shortlist 1978 problem 101
1481IMO Shortlist 1975 problem 100