« Vrati se
Consider the two square matrices
A=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &-1&-1 &+1&+1\\ +1 &-1 &-1 &-1 &+1\\ +1 &+1&-1 &+1&-1\end{bmatrix}\quad\text{ and }\quad B=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &+1&-1&+1&-1\\ +1 &-1&-1&+1&+1\\ +1 &-1&+1&-1 &+1\end{bmatrix}

with entries +1 and -1. The following operations will be called elementary:

(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.

Prove that the matrix B cannot be obtained from the matrix A using these operations.

Slični zadaci

In town A, there are n girls and n boys, and each girl knows each boy. In town B, there are n girls g_1, g_2, \ldots, g_n and 2n - 1 boys b_1, b_2, \ldots, b_{2n-1}. The girl g_i, i = 1, 2, \ldots, n, knows the boys b_1, b_2, \ldots, b_{2i-1}, and no others. For all r = 1, 2, \ldots, n, denote by A(r),B(r) the number of different ways in which r girls from town A, respectively town B, can dance with r boys from their own town, forming r pairs, each girl with a boy she knows. Prove that A(r) = B(r) for each r = 1, 2, \ldots, n.
Let a_1\geq \cdots \geq a_n \geq a_{n + 1} = 0 be real numbers. Show that
\sqrt {\sum_{k = 1}^n a_k} \leq \sum_{k = 1}^n \sqrt k (\sqrt {a_k} - \sqrt {a_{k + 1}}).
Proposed by Romania
For every integer n \geq 2 determine the minimum value that the sum \sum^n_{i=0} a_i can take for nonnegative numbers a_0, a_1, \ldots, a_n satisfying the condition a_0 = 1, a_i \leq a_{i+1} + a_{i+2} for i = 0, \ldots, n - 2.
Neka je M podskup skupa \{1, 2, ..., 15\} koji ne sadrži 3 elementa čiji je umnožak potpun kvadrat. Odredi maksimalan broj elemenata skupa M.
Initially, only the integer 44 is written on a board. An integer a on the board can be re- placed with four pairwise different integers a_1, a_2, a_3, a_4 such that the arithmetic mean \frac 14 (a_1 + a_2 + a_3 + a_4) of the four new integers is equal to the number a. In a step we simultaneously replace all the integers on the board in the above way. After 30 steps we end up with n = 4^{30} integers b_1, b2,\ldots, b_n on the board. Prove that \frac{b_1^2 + b_2^2+b_3^2+\cdots+b_n^2}{n}\geq 2011.
Skup S sastoji se od 14 prirodnih brojeva. Pokažite da postoji k\in\{1, \ldots, 7\} za koji je moguće naci k-člane disjunktne podskupove \{a_1, \ldots, a_k\} i \{b_1, \ldots, b_k\} skupa S tako da se sume
 A = \frac{1}{a_1} + \cdots + \frac{1}{a_k}, \quad  B = \frac{1}{b_1} + \cdots + \frac{1}{b_k} razlikuju za manje od 0.001.