« Vrati se
Let A and E be opposite vertices of an octagon. A frog starts at vertex A. From any vertex except E it jumps to one of the two adjacent vertices. When it reaches E it stops. Let a_n be the number of distinct paths of exactly n jumps ending at E. Prove that: a_{2n-1}=0, \quad a_{2n}={(2+\sqrt2)^{n-1} - (2-\sqrt2)^{n-1} \over\sqrt2}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1452IMO Shortlist 1973 problem 100
1481IMO Shortlist 1975 problem 100
1524IMO Shortlist 1978 problem 101
1582IMO Shortlist 1982 problem 60
1826IMO Shortlist 1991 problem 280
1980IMO Shortlist 1997 problem 240