« Vrati se
Let {\mathbb Q}^ + be the set of positive rational numbers. Construct a function f : {\mathbb Q}^ + \rightarrow {\mathbb Q}^ + such that
f(xf(y)) = \frac {f(x)}{y}
for all x, y in {\mathbb Q}^ +.

Slični zadaci

Find all functions f defined on the set of positive reals which take positive real values and satisfy: f(xf(y))=yf(x) for all x,y; and f(x)\to0 as x\to\infty.
Let \mathbb{N} = \{1,2,3, \ldots\}. Determine if there exists a strictly increasing function f: \mathbb{N} \mapsto \mathbb{N} with the following properties:

(i) f(1) = 2;

(ii) f(f(n)) = f(n) + n, (n \in \mathbb{N}).
Find all the functions f: \mathbb{R} \mapsto \mathbb{R} such that

f(x-f(y))=f(f(y))+xf(y)+f(x)-1

for all x,y \in \mathbb{R}.
Prove that for all positive real numbers a,b,c, \frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \geq 1.
Find all functions f from the reals to the reals such that \left(f(x)+f(z)\right)\left(f(y)+f(t)\right)=f(xy-zt)+f(xt+yz) for all real x,y,z,t.
Let x,y,z be three positive reals such that xyz\geq 1. Prove that
\frac { x^5-x^2 }{x^5+y^2+z^2} + \frac {y^5-y^2}{x^2+y^5+z^2} + \frac {z^5-z^2}{x^2+y^2+z^5} \geq 0 .
Hojoo Lee, Korea