« Vrati se
Let m and n be two positive integers. Let a_1, a_2, \ldots, a_m be m different numbers from the set \{1, 2,\ldots, n\} such that for any two indices i and j with 1\leq i \leq j \leq m and a_i + a_j \leq n, there exists an index k such that a_i + a_j = a_k. Show that
\frac {a_1 + a_2 + ... + a_m}{m} \geq \frac {n + 1}{2}.

Slični zadaci

Real numbers a_{1}, a_{2}, \ldots, a_{n} are given. For each i, (1 \leq i \leq n ), define
d_{i} = \max \{ a_{j}\mid 1 \leq j \leq i \} - \min \{ a_{j}\mid i \leq j \leq n \}
and let d = \max \{d_{i}\mid 1 \leq i \leq n \}.

(a) Prove that, for any real numbers x_{1}\leq x_{2}\leq \cdots \leq x_{n},
\max \{ |x_{i} - a_{i}| \mid 1 \leq i \leq n \}\geq \frac {d}{2}. \quad \quad (*)
(b) Show that there are real numbers x_{1}\leq x_{2}\leq \cdots \leq x_{n} such that the equality holds in (*).

Author: Michael Albert, New Zealand
Find all pairs of integers a,b for which there exists a polynomial P(x) \in \mathbb{Z}[X] such that product (x^2+ax+b)\cdot P(x) is a polynomial of a form x^n+c_{n-1}x^{n-1}+...+c_1x+c_0 where each of c_0,c_1,...,c_{n-1} is equal to 1 or -1.
The function f from the set \mathbb{N} of positive integers into itself is defined by the equality
\displaystyle f(n)=\sum_{k=1}^{n} \gcd(k,n),\qquad n\in \mathbb{N}
a) Prove that f(mn)=f(m)f(n) for every two relatively prime {m,n\in\mathbb{N}}.

b) Prove that for each a\in\mathbb{N} the equation f(x)=ax has a solution.

c) Find all a \in \mathbb{N} such that the equation f(x)=ax has a unique solution.
Let T denote the set of all ordered triples \left(p,q,r\right) of nonnegative integers. Find all functions f: T \rightarrow \mathbb{R} satisfying
f(p,q,r) =
\begin{cases}
0 &\text{if}\; pqr = 0,\\
1+\frac{1}{6}(f(p+1,q-1,r)+f(p-1,q+1,r) &\\
+f(p-1,q,r+1)+f(p+1,q,r-1) &\\
+f(p,q+1,r-1)+f(p,q-1,r+1)) &\text{otherwise}\end{cases}
for all nonnegative integers p, q, r.
Let a, b, c be positive real numbers so that abc = 1. Prove that
\left( a - 1 + \frac 1b \right) \left( b - 1 + \frac 1c \right) \left( c - 1 + \frac 1a \right) \leq 1.
Let a, b, c be positive real numbers such that abc = 1. Prove that \frac {1}{a^{3}\left(b + c\right)} + \frac {1}{b^{3}\left(c + a\right)} + \frac {1}{c^{3}\left(a + b\right)}\geq \frac {3}{2}.