IMO Shortlist 2005 problem A1


Kvaliteta:
  Avg: 3.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Find all pairs of integers a,b for which there exists a polynomial P(x) \in \mathbb{Z}[X] such that product (x^2+ax+b)\cdot P(x) is a polynomial of a form x^n+c_{n-1}x^{n-1}+...+c_1x+c_0 where each of c_0,c_1,...,c_{n-1} is equal to 1 or -1.
Source: Međunarodna matematička olimpijada, shortlist 2005