IMO Shortlist 2004 problem N2


Kvaliteta:
  Avg: 4.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
The function f from the set \mathbb{N} of positive integers into itself is defined by the equality
\displaystyle f(n)=\sum_{k=1}^{n} \gcd(k,n),\qquad n\in \mathbb{N}
a) Prove that f(mn)=f(m)f(n) for every two relatively prime {m,n\in\mathbb{N}}.

b) Prove that for each a\in\mathbb{N} the equation f(x)=ax has a solution.

c) Find all a \in \mathbb{N} such that the equation f(x)=ax has a unique solution.
Source: Međunarodna matematička olimpijada, shortlist 2004



Comments:

Kada naidjes na ovak nesto, dodaj tag invalid. Misem pokazi na postojece tagove, pojavit ce ti se mali box, tamo ukucas ime taga ('invalid') i lupis enter.
Last modified: ikicic, April 19, 2012, 11:59 p.m.
iiiiiiiii jos jedan :D