« Vrati se
Suppose that a, b, c > 0 such that abc = 1. Prove that \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1.

Slični zadaci

Neka je n>1 neparan cijeli broj pri čemu postoje cijeli brojevi x_1, x_2, \ldots x_n \geq 0 koji zadovoljavaju jednadžbe
 (x_2-x_1)^2+2(x_2+x_1)+1=n^2
 (x_3-x_2)^2+2(x_3+x_2)+1=n^2
 \ldots \ldots \ldots \ldots \ldots \ldots \ldots
 (x_1-x_n)^2+2(x_1+x_n)+1=n^2
Pokažite da je ili x_1=x_n ili postoji j, \ 1 \leq j \leq n-1 takav da je x_j=x_{j+1}.
Neka je F_n=x^n \sin nA + y^n \sin nB + z^n \sin nC, gdje su x, y, z, A, B, C realni brojevi takvi da je A+B+C=\pi. Ako je F_1=F_2=0, dokažite da je F_n=0 za svaki prirodni broj n.
Let a_{1}, a_{2}...a_{n} be non-negative reals, not all zero. Show that that
(a) The polynomial p(x) = x^{n} - a_{1}x^{n - 1} + ... - a_{n - 1}x - a_{n} has preceisely 1 positive real root R.
(b) let A = \sum_{i = 1}^n a_{i} and B = \sum_{i = 1}^n ia_{i}. Show that A^{A} \leq R^{B}.
Let a > 2 be given, and starting a_0 = 1, a_1 = a define recursively:

a_{n+1} = \left(\frac{a^2_n}{a^2_{n-1}} - 2 \right) \cdot a_n.

Show that for all integers k > 0, we have: \sum^k_{i = 0} \frac{1}{a_i} < \frac12 \cdot (2 + a - \sqrt{a^2-4}).
Let a_1 \geq a_2 \geq \ldots \geq a_n be real numbers such that for all integers k > 0,

a^k_1 + a^k_2 + \ldots + a^k_n \geq 0.

Let p = max\{|a_1|, \ldots, |a_n|\}. Prove that p = a_1 and that

(x - a_1) \cdot (x - a_2) \cdots (x - a_n) \leq x^n - a^n_1 for all x > a_1.
Show that there exists a finite set A \subset \mathbb{R}^2 such that for every X \in A there are points Y_1, Y_2, \ldots, Y_{1993} in A such that the distance between X and Y_i is equal to 1, for every i.