Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1998 problem A3
1998
alg
shortlist
Let
and
be positive real numbers such that
. Prove that
%V0 Let $x,y$ and $z$ be positive real numbers such that $xyz=1$. Prove that $$\frac{x^{3}}{(1 + y)(1 + z)}+\frac{y^{3}}{(1 + z)(1 + x)}+\frac{z^{3}}{(1 + x)(1 + y)} \geq \frac{3}{4}.$$
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1851
IMO Shortlist 1993 problem A3
1993
alg
nejednakost
shortlist
15
1852
IMO Shortlist 1993 problem A4
1993
alg
shortlist
sustav
0
1853
IMO Shortlist 1993 problem A5
1993
alg
shortlist
tb
0
1874
IMO Shortlist 1993 problem N4
1993
alg
funkcija
shortlist
tb
1
1984
IMO Shortlist 1998 problem A2
1998
alg
shortlist
13
1986
IMO Shortlist 1998 problem A4
1998
alg
shortlist
tb
0