« Vrati se
Neka su x,y,z,a,b,c cijeli brojevi za koje vrijedi:\begin{align*}
x^2+y^2&=a^2\text{,} \\
x^2+z^2&=b^2\text{,} \\
y^2+z^2&=c^2\text{.} \\
\end{align*} Dokažite da je broj xyz djeljiv s
(a) 5,
(b) 55.

Slični zadaci

Riješite sustav jednadžbi \begin{equation*}
\setlength{\arraycolsep}{2pt}
\begin{array}{lclclcl}
2x_{1} &- &5x_{2} &+ &3x_{3} &= &0\\
2x_{2} &- &5x_{3} &+ &3x_{4} &= &0\\
&&&&&\vdots\\
2x_{1993} &- &5x_{1994} &+ &3x_{1} &= &0\\
2x_{1994} &- &5x_{1} &+ &3x_{2} &= &0 \text{.}
\end{array}
\end{equation*}
Nađite realna rješenja sustava jednadžbi: \begin{gather*}
x + y + z = 2\\
\left(x + y\right)\left(y + z\right) + \left(y + z\right)\left(z + x\right) + \left(z + x\right)\left(x + y\right) = 1\\
x^{2}\left(y + z\right) + y^2\left(z+x\right) + z^2\left(x+y\right) = -6 \text{.}
\end{gather*}
Nađite sva rješenja k, l, m \in \mathbb{N} jednadžbe:
k!l! = k! + l! + m!\text{.}
(n! označava umnožak prirodnih brojeva od 1 do n.)
Neka je a neki realni broj. Riješi sustav jednadžbi 
\begin{array}{lcr}
(x_1+x_2+x_3)\cdot x_4 &=& a\\
(x_1+x_2+x_4)\cdot x_3 &=& a\\
(x_1+x_3+x_4)\cdot x_2 &=& a\\
(x_2+x_3+x_4)\cdot x_1 &=& a.
\end{array}
Consider the system x + y  = z + u, 2xy = zu. Find the greatest value of the real constant m such that m \leq x/y for any positive integer solution (x,y,z,u) of the system, with x \geq y.
Each positive integer a is subjected to the following procedure, yielding the number d = d\left(a\right):

(a) The last digit of a is moved to the first position. The resulting number is called b.
(b) The number b is squared. The resulting number is called c.
(c) The first digit of c is moved to the last position. The resulting number is called d.

(All numbers are considered in the decimal system.) For instance, a = 2003 gives b = 3200, c = 10240000 and d = 02400001 = 2400001 = d\left(2003\right).

Find all integers a such that d\left( a\right) =a^2.