« Vrati se
Find all positive integers a_1, a_2, \ldots, a_n such that

\frac{99}{100} = \frac{a_0}{a_1} + \frac{a_1}{a_2} + \cdots + \frac{a_{n-1}}{a_n},
where a_0 = 1 and (a_{k+1}-1)a_{k-1} \geq a_k^2(a_k - 1) for k = 1,2,\ldots,n-1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1853IMO Shortlist 1993 problem A50
2097IMO Shortlist 2002 problem A51
2098IMO Shortlist 2002 problem A62
2261IMO Shortlist 2007 problem N56
2288IMO Shortlist 2008 problem N59
2317IMO Shortlist 2009 problem N57