« Vrati se
Let ABCD be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines BC, CA, AB, respectively. Show that PQ=QR if and only if the bisectors of \angle ABC and \angle ADC are concurrent with AC.

Slični zadaci

Let A,B,C,D be four distinct points on a line, in that order. The circles with diameters AC and BD intersect at X and Y. The line XY meets BC at Z. Let P be a point on the line XY other than Z. The line CP intersects the circle with diameter AC at C and M, and the line BP intersects the circle with diameter BD at B and N. Prove that the lines AM,DN,XY are concurrent.
We are given a positive integer r and a rectangular board ABCD with dimensions AB = 20, BC = 12. The rectangle is divided into a grid of 20 \times 12 unit squares. The following moves are permitted on the board: one can move from one square to another only if the distance between the centers of the two squares is \sqrt {r}. The task is to find a sequence of moves leading from the square with A as a vertex to the square with B as a vertex.

(a) Show that the task cannot be done if r is divisible by 2 or 3.

(b) Prove that the task is possible when r = 73.

(c) Can the task be done when r = 97?
Two circles G_1 and G_2 intersect at two points M and N. Let AB be the line tangent to these circles at A and B, respectively, so that M lies closer to AB than N. Let CD be the line parallel to AB and passing through the point M, with C on G_1 and D on G_2. Lines AC and BD meet at E; lines AN and CD meet at P; lines BN and CD meet at Q. Show that EP = EQ.
Let n \geq 3 be an integer. Let t_1, t_2, ..., t_n be positive real numbers such that

n^2 + 1 > \left( t_1 + t_2 + ... + t_n \right) \left( \frac{1}{t_1} + \frac{1}{t_2} + ... + \frac{1}{t_n} \right).

Show that t_i, t_j, t_k are side lengths of a triangle for all i, j, k with 1 \leq i < j < k \leq n.
In triangle ABC the bisector of angle BCA intersects the circumcircle again at R, the perpendicular bisector of BC at P, and the perpendicular bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles RPK and RQL have the same area.

Author: Marek Pechal, Czech Republic
Let ABC be a triangle with AB = AC . The angle bisectors of \angle C AB and \angle AB C meet the sides B C and C A at D and E , respectively. Let K be the incentre of triangle ADC. Suppose that \angle B E K = 45^\circ . Find all possible values of \angle C AB .

Jan Vonk, Belgium, Peter Vandendriessche, Belgium and Hojoo Lee, Korea