« Vrati se
Let m be a fixed integer greater than 1. The sequence x_0, x_1, x_2, \ldots is defined as follows:

x_i=  2^i if 0 \leq i\leq m-1 and x_i = \sum_{j=1}^{m}x_{i-j}, if i\geq m.

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

Slični zadaci

Neka je skup prirodnih brojeva podijeljen u intervale na sljedeći način:
U prvom intervalu je broj 1, u drugom brojevi 2 i 3, u trećem 4, 5 i 6 i u svakom idućem jedan broj više nego u prethodnom (brojevi u intervalima su uzastopni).
Neka je p_i udio prostih brojeva u i-tom intervalu.

a) Dokaži ili opovrgni: Postoji beskonačno brojeva k za koje je  p_{k+1} < p_k.

b) Dokaži ili opovrgni: Postoji beskonačno brojeva k za koje je  p_{k+1} > p_k.
Niz \{ a_n \} je zadan na ovaj način:
 a_0=0, \ a_1=1, \ a_n=2a_{n-1}+a_{n-2}, \ n>1.
Dokažite da 2^k dijeli a_n ako i samo ako 2^k dijeli n.
Find all positive integers n such that there exists a sequence of positive integers a_1, a_2, ..., a_n satisfying
a_{k+1}=\frac{a_k^2+1}{a_{k-1}+1}-1 for every k with 2 \leqslant k \leqslant n-1.

Proposed by North Korea
Let a_0, a_1, a_2, \ldots be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, \gcd (a_i, a_{i + 1}) > a_{i - 1}. Prove that a_n\ge 2^n for all n\ge 0.

Proposed by Morteza Saghafian, Iran
We define a sequence \left(a_{1},a_{2},a_{3},...\right) by setting
a_{n} = \frac {1}{n}\left(\left[\frac {n}{1}\right] + \left[\frac {n}{2}\right] + \cdots + \left[\frac {n}{n}\right]\right)
for every positive integer n. Hereby, for every real x, we denote by \left[x\right] the integral part of x (this is the greatest integer which is \leq x).

a) Prove that there is an infinite number of positive integers n such that a_{n + 1} > a_{n}.
b) Prove that there is an infinite number of positive integers n such that a_{n + 1} < a_{n}.
Let b be an integer greater than 5. For each positive integer n, consider the number
x_n = \underbrace{11\cdots1}_{n - 1}\underbrace{22\cdots2}_{n}5,
written in base b.

Prove that the following condition holds if and only if b = 10: there exists a positive integer M such that for any integer n greater than M, the number x_n is a perfect square.