Slični zadaci
Suppose we have a
-gon. Some
diagonals are coloured black and some other
diagonals are coloured red (a side is not a diagonal), so that no two diagonals of the same colour can intersect strictly inside the polygon, although they can share a vertex. Find the maximum number of intersection points between diagonals coloured differently strictly inside the polygon, in terms of
.




Determine the smallest positive real number
with the following property. Let
be a convex quadrilateral, and let points
,
,
, and
lie on sides
,
,
, and
, respectively. Consider the areas of triangles
,
,
and
; let
be the sum of the two smallest ones, and let
be the area of quadrilateral
. Then we always have
.
Author: unknown author, USA


















Author: unknown author, USA