« Vrati se
In triangle ABC the bisector of angle BCA intersects the circumcircle again at R, the perpendicular bisector of BC at P, and the perpendicular bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles RPK and RQL have the same area.

Author: Marek Pechal, Czech Republic

Slični zadaci

Consider an acute-angled triangle ABC. Let P be the foot of the altitude of triangle ABC issuing from the vertex A, and let O be the circumcenter of triangle ABC. Assume that \angle C \geq \angle B+30^{\circ}. Prove that \angle A+\angle COP < 90^{\circ}.
1. Let ABC be an acute-angled triangle with AB\neq AC. The circle with diameter BC intersects the sides AB and AC at M and N respectively. Denote by O the midpoint of the side BC. The bisectors of the angles \angle BAC and \angle MON intersect at R. Prove that the circumcircles of the triangles BMR and CNR have a common point lying on the side BC.
Let ABC be triangle with incenter I. A point P in the interior of the triangle satisfies \angle PBA+\angle PCA = \angle PBC+\angle PCB. Show that AP \geq AI, and that equality holds if and only if P=I.
Let H be the orthocenter of an acute-angled triangle ABC. The circle \Gamma_{A} centered at the midpoint of BC and passing through H intersects the sideline BC at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1} and C_{2}.

Prove that six points A_{1} , A_{2}, B_{1}, B_{2}, C_{1} and C_{2} are concyclic.

Author: Andrey Gavrilyuk, Russia
Let ABC be a triangle with AB = AC . The angle bisectors of \angle C AB and \angle AB C meet the sides B C and C A at D and E , respectively. Let K be the incentre of triangle ADC. Suppose that \angle B E K = 45^\circ . Find all possible values of \angle C AB .

Jan Vonk, Belgium, Peter Vandendriessche, Belgium and Hojoo Lee, Korea
Let ABC be a triangle with circumcentre O. The points P and Q are interior points of the sides CA and AB respectively. Let K,L and M be the midpoints of the segments BP,CQ and PQ. respectively, and let \Gamma be the circle passing through K,L and M. Suppose that the line PQ is tangent to the circle \Gamma. Prove that OP = OQ.

Proposed by Sergei Berlov, Russia