« Vrati se
Let ABC be a fixed triangle, and let A_1, B_1, C_1 be the midpoints of sides BC, CA, AB, respectively. Let P be a variable point on the circumcircle. Let lines PA_1, PB_1, PC_1 meet the circumcircle again at A', B', C', respectively. Assume that the points A, B, C, A', B', C' are distinct, and lines AA', BB', CC' form a triangle. Prove that the area of this triangle does not depend on P.

Author: Christopher Bradley, United Kingdom

Slični zadaci

Let \triangle ABC be an acute-angled triangle with AB \not= AC. Let H be the orthocenter of triangle ABC, and let M be the midpoint of the side BC. Let D be a point on the side AB and E a point on the side AC such that AE=AD and the points D, H, E are on the same line. Prove that the line HM is perpendicular to the common chord of the circumscribed circles of triangle \triangle ABC and triangle \triangle ADE.
Let ABC be a triangle, and M the midpoint of its side BC. Let \gamma be the incircle of triangle ABC. The median AM of triangle ABC intersects the incircle \gamma at two points K and L. Let the lines passing through K and L, parallel to BC, intersect the incircle \gamma again in two points X and Y. Let the lines AX and AY intersect BC again at the points P and Q. Prove that BP = CQ.
In triangle ABC, let J be the center of the excircle tangent to side BC at A_{1} and to the extensions of the sides AC and AB at B_{1} and C_{1} respectively. Suppose that the lines A_{1}B_{1} and AB are perpendicular and intersect at D. Let E be the foot of the perpendicular from C_{1} to line DJ. Determine the angles \angle{BEA_{1}} and \angle{AEB_{1}}.
Determine the smallest positive real number k with the following property. Let ABCD be a convex quadrilateral, and let points A_1, B_1, C_1, and D_1 lie on sides AB, BC, CD, and DA, respectively. Consider the areas of triangles AA_1D_1, BB_1A_1, CC_1B_1 and DD_1C_1; let S be the sum of the two smallest ones, and let S_1 be the area of quadrilateral A_1B_1C_1D_1. Then we always have kS_1\ge S.

Author: unknown author, USA
Given an acute triangle ABC with \angle B > \angle C. Point I is the incenter, and R the circumradius. Point D is the foot of the altitude from vertex A. Point K lies on line AD such that AK = 2R, and D separates A and K. Lines DI and KI meet sides AC and BC at E,F respectively. Let IE = IF.

Prove that \angle B\leq 3\angle C.

Author: Davoud Vakili, Iran
Point P lies on side AB of a convex quadrilateral ABCD. Let \omega be the incircle of triangle CPD, and let I be its incenter. Suppose that \omega is tangent to the incircles of triangles APD and BPC at points K and L, respectively. Let lines AC and BD meet at E, and let lines AK and BL meet at F. Prove that points E, I, and F are collinear.

Author: Waldemar Pompe, Poland