« Vrati se
For an integer m, denote by t(m) the unique number in \{1, 2, 3\} such that m + t(m) is a multiple of 3. A function f: \mathbb{Z}\to\mathbb{Z} satisfies f( - 1) = 0, f(0) = 1, f(1) = - 1 and f\left(2^{n} + m\right) = f\left(2^n - t(m)\right) - f(m) for all integers m, n\ge 0 with 2^n > m. Prove that f(3p)\ge 0 holds for all integers p\ge 0.

Proposed by Gerhard Woeginger, Austria

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2315IMO Shortlist 2009 problem N311
2288IMO Shortlist 2008 problem N59
2172IMO Shortlist 2004 problem N315
2095IMO Shortlist 2002 problem A32
2041IMO Shortlist 2000 problem A40
1874IMO Shortlist 1993 problem N41