IMO Shortlist 2002 problem A3


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 7.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let P be a cubic polynomial given by P(x)=ax^3+bx^2+cx+d, where a,b,c,d are integers and a\ne0. Suppose that xP(x)=yP(y) for infinitely many pairs x,y of integers with x\ne y. Prove that the equation P(x)=0 has an integer root.
Source: Međunarodna matematička olimpijada, shortlist 2002