« Vrati se
Za svaki prirodan broj n određeni su cijeli brojevi a_n i b_n tako da je
 (1+\sqrt{2})^{2n+1}=a_n+b_n \sqrt{2}.
a) Dokažite da su a_n i b_n neparni za svaki n.
b) Dokažite da je b_n hipotenuza pravokutnog trokuta čije su katete
 \frac{a_n+(-1)^n}{2}, \ \frac{a_n-(-1)^n}{2}.

Slični zadaci

Find all of the positive real numbers like x,y,z, such that :

1.) x + y + z = a + b + c

2.) 4xyz = a^2x + b^2y + c^2z + abc

Proposed to Gazeta Matematica in the 80s by VASILE CÎRTOAJE and then by Titu Andreescu to IMO 1995.
Suppose that x_1, x_2, x_3, \ldots are positive real numbers for which x^n_n = \sum^{n-1}_{j=0} x^j_n for n = 1, 2, 3, \ldots Prove that \forall n, 2 - \frac{1}{2^{n-1}} \leq x_n < 2 - \frac{1}{2^n}.
Let a_1,a_2,\ldots be an infinite sequence of real numbers, for which there exists a real number c with 0\leq a_i\leq c for all i, such that

\left|\,a_i-a_j\,\right|\geq{1\over i+j}{\rm \forall}i,j \quad \textnormal{with} \quad i\ne j.

Prove that c\geq1.
Let a_0, a_1, a_2, ... be an infinite sequence of real numbers satisfying the equation a_n=\left|a_{n+1}-a_{n+2}\right| for all n\geq 0, where a_0 and a_1 are two different positive reals.

Can this sequence a_0, a_1, a_2, ... be bounded?

Remark This one is from the IMO Shortlist 2004, but it's already published on the official BWM website und thus I take the freedom to post it here:
a_{0},\ a_{1},\ a_{2},\dots is a sequence of real numbers such that
a_{n + 1} = \left[a_{n}\right]\cdot \left\{a_{n}\right\}
prove that exist j such that for every i\geq j we have a_{i + 2} = a_{i}.
Let a_{0}, a_{1}, a_{2}, ... be a sequence of reals such that a_{0} = - 1 and

a_{n} + \frac {a_{n - 1}}{2} + \frac {a_{n - 2}}{3} + ... + \frac {a_{1}}{n} + \frac {a_{0}}{n + 1} = 0 for all n\geq 1.

Show that a_{n} > 0 for all n\geq 1.