« Vrati se
Na stranicama \overline{BC}, \overline{CA}, \overline{AB} trokuta ABC izabrane su točke A_1, B_1, C_1 pri čemu se pravci AA_1, BB_1, CC_1 sijeku u jednoj točki. Dokažite da se pravci AA_2, BB_2, CC_2, simetrični danim pravcima u odnosu na odgovarajuće simetrale kutova, također sijeku u jednoj točki.

Slični zadaci

Kroz zadanu točku P na nekoj stranici trokuta ABC konsturiraj pravac koji će trokut podijeliti na dva dijela jednake površine.
Let ABC be a triangle for which there exists an interior point F such that \angle AFB=\angle BFC=\angle CFA. Let the lines BF and CF meet the sides AC and AB at D and E respectively. Prove that

AB+AC\geq4DE.
Let A_1 be the center of the square inscribed in acute triangle ABC with two vertices of the square on side BC. Thus one of the two remaining vertices of the square is on side AB and the other is on AC. Points B_1,\ C_1 are defined in a similar way for inscribed squares with two vertices on sides AC and AB, respectively. Prove that lines AA_1,\ BB_1,\ CC_1 are concurrent.
Let ABC be a triangle and M be an interior point. Prove that

\min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.
Let ABCD be a cyclic quadrilateral. Let E and F be variable points on the sides AB and CD, respectively, such that AE:EB=CF:FD. Let P be the point on the segment EF such that PE:PF=AB:CD. Prove that the ratio between the areas of triangles APD and BPC does not depend on the choice of E and F.
Let A, B and C be non-collinear points. Prove that there is a unique point X in the plane of ABC such that XA^2 + XB^2 + AB^2 = XB^2 + XC^2 + BC^2 = XC^2 + XA^2 + CA^2.