IMO Shortlist 2002 problem G2


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let ABC be a triangle for which there exists an interior point F such that \angle AFB=\angle BFC=\angle CFA. Let the lines BF and CF meet the sides AC and AB at D and E respectively. Prove that

AB+AC\geq4DE.
Source: Međunarodna matematička olimpijada, shortlist 2002