« Vrati se
Dan je prirodan broj n. Neka je S(n) skup kompleksnih brojeva na jediničnoj kružnici u kompleksnoj ravnini sa središtem u točki z=0 koji zadovoljavaju sljedeću jednakost
 \left( z+\frac{1}{z} \right)^n=2^{n-1} \left( z^n+\frac{1}{z^n} \right).
a) Odredite skup S(n) za n=2,3,4,5.
b) Odredite gornju granicu (ovisnu o n) za broj elemenata skupa S(n).

Slični zadaci

Let a_{0} = 1994 and a_{n + 1} = \frac {a_{n}^{2}}{a_{n} + 1} for each nonnegative integer n. Prove that 1994 - n is the greatest integer less than or equal to a_{n}, 0 \leq n \leq 998
Find all of the positive real numbers like x,y,z, such that :

1.) x + y + z = a + b + c

2.) 4xyz = a^2x + b^2y + c^2z + abc

Proposed to Gazeta Matematica in the 80s by VASILE CÎRTOAJE and then by Titu Andreescu to IMO 1995.
Suppose that a, b, c > 0 such that abc = 1. Prove that \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1.
Let r_{1},r_{2},\ldots ,r_{n} be real numbers greater than or equal to 1. Prove that

\frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}.
The numbers from 1 to n^2 are randomly arranged in the cells of a n \times n square (n \geq 2). For any pair of numbers situated on the same row or on the same column the ratio of the greater number to the smaller number is calculated. Let us call the characteristic of the arrangement the smallest of these n^2\left(n-1\right) fractions. What is the highest possible value of the characteristic ?
Let a_{ij} (with the indices i and j from the set \left\{1,\ 2,\ 3\right\}) be real numbers such that

a_{ij}>0 for i = j;
a_{ij}<0 for i\neq j.

Prove the existence of positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},
a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},
a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}

are either all negative, or all zero, or all positive.